Abstract
ABSTRACT The role of charge exchange in shaping exoplanet photoevaporation remains a topic of contention. Exchange of electrons between stellar wind protons from the exoplanet’s host star and neutral hydrogen from the planet’s wind has been proposed as a mechanism to create ‘energetic neutral atoms’ (ENAs), which could explain the high absorption line velocities observed in systems where mass-loss is occurring. In this paper, we present results from three-dimensional hydrodynamic simulations of the mass-loss of a planet similar to HD 209458b. We self-consistently launch a planetary wind by calculating the ionization and heating resulting from incident high-energy radiation, inject a stellar wind into the simulation, and allow electron exchange between the stellar and planetary winds. We predict the potential production of ENAs by the wind–wind interaction analytically, and then present the results of our simulations, which confirm the analytic limits. Within the limits of our hydrodynamic simulation, we find that charge exchange with the stellar wind properties examined here is unable to explain the absorption observed at high Doppler velocities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.