Abstract

Abstract The physicochemical properties of clay minerals strongly depend on their hydration characteristics which therefore have drawn great concerns from different research communities. In the present work, the effects of charge density of montmorillonite (Mt) on the hydration characteristics of its interlayer spaces, particularly the siloxane surface, were studied using classical molecular dynamics (MD) simulations. Four Mt. models with various octahedral charges are established, and these charges are compensated with tetramethylammonium cation (TMA). The simulation results showed that water molecules within the hydration layer of siloxane surface will donate hydrogen atoms to form H-bond with the surface oxygen atoms, while those surrounding TMA only slightly have their oxygen atoms point towards TMA. In addition, water molecules prefer to first hydrate the siloxane surface and then the TMA as the water content increases. These findings indicate that water molecules have stronger hydration interaction with siloxane surface than with TMA, and TMA can be ideal counterbalance cation in terms of studying the hydration characteristics of siloxane surface. Charge density can significantly influence the hydration of TMA-Mt. Although increasing charge density will not lead to the formation of stronger H-bond (i.e., no obvious reduction of H-bond length) between water molecules and siloxane surface, water molecules are more likely to be drawn to the siloxane surface and form more H-bonds between them. Subsequently, the hydration energy increases and the mobility of water molecules decreases as the charge density rises. These findings show that charge density can evidently influence the hydrophobicity of siloxane surface, which may further influence its interaction with organic species, e.g., the adsorption of organic contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call