Abstract

The direct contact between multi-walled carbon nanotubes (MWCNTs) and cell membranes causes membrane disruption, potentially leading to cytotoxicity. However, the role of electrostatic forces and MWCNT properties is still open to debate. In this study, the influences of charge and MWCNT surface defects on membrane disruption were investigated by microscopy and a quartz crystal microbalance with dissipation monitoring (QCM-D). Positively/negatively charged giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) were made as model cell membranes. Negatively charged MWCNTs disrupted the GUVs containing positively charged lipids, which confirmed the electrostatically mediated interaction. However, the mass loss was detected from the negatively charged SLBs after MWCNT exposure, which suggests the extraction of phospholipids. The defect degree of MWCNTs correlated with their adhesion amount on the membranes. Both the oxygenated functional groups and unoxidized dangling carbon bonds were active sites for MWCNT-membrane interactions. The MWCNTs were observed to be engulfed inside the GUVs. The results clearly demonstrate that phospholipid extraction by MWCNTs could occur in electrostatically repulsive conditions, and MWCNT defects were active binding sites whether or not they were oxygenated. Our findings should be helpful in the design and safe applications of carbon nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.