Abstract

By means of studying the evolution equation for the Wigner distributions of quantum dissipative systems we derive the quantum corrections to the classical Liouville dynamics, taking into account the standard quantum friction model. The resulting evolution turns out to be the classical one plus fluctuations that depend not only on the ℏ size but also on the momentum and the dissipation parameter (i.e., the coupling with the environment). On the other hand, we extend our studies of a paradigmatic system based on the kicked rotator, and we confirm that by adding fluctuations only depending on the size of the Planck constant we essentially recover the quantum behavior. This is systematically measured in the parameter space with the overlaps and differences in the dispersion of the marginal distributions corresponding to the Wigner functions. Taking into account these results and analyzing the Wigner evolution equation we conjecture that the chaotic nature of our system is responsible for the independence on the momentum, while the dependence on the dissipation is provided implicitly by the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.