Abstract

The influences of chaotic activity and time delay on the transmission of the sub-threshold signal (STS) in a single FitzHugh-Nagumo neuron and coupled neuronal networks are studied. It is found that a moderate chaotic activity level can enhance the system's detection and transmission of STS. This phenomenon is known as chaotic resonance (CR). In a single neuron, the large amplitude and small period of the STS have a positive effect on the CR phenomenon. In the coupled neuronal network, however, the signal transmission performance of chemical synapses is better than that of electrical synapses. The time delay can determine the trend of the system response, and the multiple chaotic resonances phenomenon is observed upon fine-tuning the time delay length. Both sub-harmonic chaotic resonance and chaotic anti-resonance appear when the STS period and time delay are locked. In chained networks, the signal transmission performance between electrical synapses attenuates continuously. Conversely, the performance between chemical synapses reaches a steady state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call