Abstract

Runoff from mountain glaciers and icecaps is a critical control on physical and chemical conditions of aquatic ecosystems in glaciated watersheds. To date, there has been little research on the biogeochemistry of proglacial streams. Here we use a space for time substitution to evaluate how stream water physical conditions and concentrations of carbon, nitrogen, and phosphorus may be altered by diminishing glacial coverage. For a full annual hydrograph, we sampled six watersheds in southeastern Alaska that ranged in glacier coverage from 0 to 55%. We found that during the summer runoff season (May–October), stream water temperature and specific conductivity were negatively correlated with the percentage of the watershed covered by glacial ice, while stream water turbidity showed a significant positive correlation. Stream water concentrations of dissolved organic carbon (DOC) were typically low (0.5–3.0 mg C L−1) and showed a significant trend toward higher concentrations as watershed glacier coverage decreased. Concentrations of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen also increased significantly with decreasing glacial coverage. In contrast, concentrations of soluble reactive phosphorus decreased with lower glacial coverage. Interestingly, we found that the DOC:DON ratio of stream water dissolved organic matter (DOM) decreased with increasing glacier coverage, suggesting that glaciers may be a source of N‐rich DOM. During winter low flows (November–April) there were few differences in stream water physical and biogeochemical conditions across the six watersheds as glacial inputs diminished and streamflow was dominated by groundwater. Our findings suggest that in southeastern Alaska ongoing glacial recession and the associated land cover change will impact physical and biogeochemical conditions in coastal streams, with implications for salmon spawning habitat, aquatic ecosystem productivity, and fluxes of reactive nutrients to downstream nearshore marine ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call