Abstract

Seismic resisting systems consisting of double angles are used in many parts of the world. Generally, these double angles are arranged in the shape of a T, with a very small distance between them. However, sometimes these angles are distanced and faced in order to improve their mechanical characteristics about the axis of symmetry. In the past, their design was made in the same way as the double angles arranged in a T shape, that is, considering the limit states of flexural buckling and buckling by flexural-torsional, but ignoring the properties of the connectors and their effect on the modified slenderness ratio, as well as the fact that in this case the warping constant is not negligible. These parameters are taken into account in this research in order to study the effects of increasing the distance between the connectors and their possible use as braces in seismic resisting systems. The theoretical results were compared with the experimental results of fifty-seven specimens tested in the laboratory of structures of the Universidad Nacional de Colombia – Sede Manizales. The models were classified according to the main angles, the connectors, the total lengths, and the width of separation. All of them were subjected to axial compressive stress, with free rotation at both ends. Three identical specimens of each model were constructed. The flexural buckling length about x-axis was limited to two meters in all specimens tested whereas the flexural bucking length about y-axis and flexural-torsional buckling length were not limited, i.e. these lengths are equivalent to the total length of each specimen tested. This in order that the critical limit state was to be the flexural-torsional buckling as a function of the torsional buckling term in Z, except in the models of class 2 in which this induced condition was not reached. This was proposed to better evaluate the torsional buckling term in Z. The experimental results show that the nominal compressive strength for the flexural-torsional buckling limit state, when it is governed by torsion, is undervalued. A new methodology is proposed for the calculation of the nominal compressive strength for the flexural-torsional buckling limit state, when it is governed by torsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.