Abstract

Tensile and fracture toughness behavior of a Zr-based bulk metallic glass matrix composite (BMGMC) containing a body-centered cubic crystalline phase was examined over temperatures from 77 K to 653 K (−196 °C to 380 °C). The BMGMC exhibited tensile plasticity at all test temperatures. The sample tested in tension at 173 K (−100 °C) exhibited work hardening but the remaining samples tested at higher temperatures exhibited work softening. EBSD analysis of the crystalline phase after tensile testing provides insight into active deformation mechanisms in the crystalline phase. At 603 K (330 °C), the dendrites exhibit significant plastic strain, with the dendrites oriented {101} parallel to the loading direction exhibiting the least amount of strain. Schmid factor analysis leads to the hypothesis that {110}〈111〉 dislocation mechanisms are active at this temperature. Additionally, measurements of dendrite shape as a function of macroscopic strain state in the tension experiments provide insight into cooperative deformation mechanisms in the composite. At low temperatures, the fracture toughness of the notch toughness samples exceeded that of fatigue precracked samples; but at and above room temperature, the toughness values of notched and fatigue precracked samples converge. These observations are rationalized based on the changes to the flow and fracture behavior of the glass and the crystalline phases over this temperature range. At low temperatures, the crystalline phase is sensitive to defects and changes in stress state that reduce its energy absorbing ability. At higher temperatures, both constituents possess lower strength and are less sensitive to defects, enabling more significant crack tip blunting in the fatigue precracked samples. This produces toughness values that are similar to those obtained for the notched samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call