Abstract
The effects of salinity and osmolality differences on the uptake rates of dissolved zinc were investigated in 3 crabs of different ecologies —the euryhaline common shore crab Carcinus maenas, the extremely euryhaline Chinese mitten crab Eriocheir sinensis, and a more stenohaline marine crab, the velvet swimming crab Necora puber. Reduced salinities caused increases in the zinc uptake rate of E. sinensis as expected from the free metal ion model, with increased free zinc ion availabilities in conditions of reduced chloride complexation. In the cases of C. maenas and N. puber, however, reduced salinity was associated with reduced zinc uptake, a result interpreted in terms of a physiological response by these crabs to low salinity offsetting the physicochemical effect of increased free zinc ion availability. Results can be partly explained by reported changes in apparent water permeability (AWP) made by the crabs to low salinity, although experiments manipulating solution osmotic pressures independently of salinity (and therefore chloride concentrations) indicate that other physiological responses may also be coming into effect. The interaction of physiology and physicochemistry in controlling trace metal uptake from solution clearly varies between species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.