Abstract

The activity of cells in the medial geniculate body (MGB) of adult cats was recorded during different states of cortical arousal with and without cooling of the auditory cortex. In the absence of auditory cortex cooling, the overall mean unit spontaneous discharge rate was 49% higher during desynchroized Electrocorticogram (ECoG) periods (high cortical arousal). Responses to sound were somewhat more prominent vis-à-vis the spontaneous activity during periods of high arousal. Changes in spontaneous discharge rate associated with arousal shifts were significantly reduced during auditory cortex cooling. When the ECoG changed from desynchronized to synchronized activity, MGB cells showed a change in discharge pattern, typically characterized by an increase in both high-rate bursts and long-interval pauses. These changes were duplicated for most cells by cooling of the auditory cortex. Corticofugal fiber discharge thus has an effect on MGB neuronal activity which is dependent on the level of cortical arousal. This effect is most likely a result of direct corticogeniculate activity, though indirect auditory cortex - brainstem - MGB routes may also be involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call