Abstract
The soil water storage (SWS) defines crop productivity of a soil and varies under differing climatic conditions. Pattern identification and quantification of these variations remains difficult due to the non-linear behaviour of SWS changes over time. We hypothesize that these patterns can be revealed by applying wavelet analysis to an eight-year time series of SWS, precipitation (P) and actual evapotranspiration (ETa) in similar soils of lysimeters in a colder and drier location and a warmer and wetter location within Germany. Correlations between SWS, P and ETa at these sites might reveal the influence of altered climatic conditions but also from subsequent wet and dry years on SWS changes. We found that wet and dry years exerted influence on SWS changes by leading to faster or slower response times of SWS changes to precipitation in respect to normal years. This might be explained by a higher soil water content and the related higher soil hydraulic conductivity. Time shifts in correlations between ETa and SWS became smaller at the wetter and warmer site over time in comparison to the cooler and drier site where they stayed constant. This could be attributed to an earlier onset of the vegetation period over the years and thus to an earlier ETa peak every year and reflects the direct impact of changing climate on soil water budget parameters. 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.