Abstract
Experimental measurements of the etch rate and ion flux distributions on the wafer are combined with modeling to elucidate the effects of reactor wall conditions on Cl concentration and polysilicon etch rate uniformity in an inductively coupled plasma etching reactor. The spatially averaged etch rate across the wafer increases with time as etch products react with residual oxygen in the chamber and coat the reactor walls with a thin layer of silicon oxychloride film. Chlorine concentration in the plasma and the Si etch rate increase due to lower recombination probability of Cl on this film as compared to the “clean” anodized aluminum wall surface. Etch rate is highest at the wafer center when the walls are maintained in the clean state. In contrast, the etch rate peaks at the wafer edges when the walls are coated with the silicon oxychloride film. The drift in etch rate and uniformity is primarily due to a drift in Cl concentration and its spatial distribution. As the reactor walls are coated, the etch rate distribution changes from a center-fast profile to an edge-fast profile due to a change in the dominant Cl depletion mechanism from wall recombination to recombination on the wafer surface. © 2003 The Electrochemical Society. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.