Abstract
The objective of this study was to evaluate the effect of different surface treatments on the micro-tensile bond strength (microTBS) of an adhesive luting agent to CAD-CAM ceramic. The hypothesis tested was that neither of the surface treatments would produce higher bond strength of the adhesive luting agent to CAD-CAM ceramic. Ceramic specimens of two different sizes (6 mm x 8 mm x 3 mm; 13 mm x 8 mm x 4 mm) were fabricated from ProCAD ceramic blocs (Ivoclar-Vivadent) with a low-speed diamond saw. The ceramic blocks were divided into seven groups and submitted to the following surface treatments: group 1: no treatment; group 2: etching with 37% H(3)PO(4); group 3: etching with 37% H(3)PO(4)+silane; group 4: etching with 37% H(3)PO(4)+silane+adhesive resin; group 5: etching with 4.9% HF acid; group 6: etching with 4.9% HF acid+silane; group 7: etching with HF acid+silane+adhesive resin. After surface treatment, two differently sized porcelain disks were bonded together with a composite luting agent (Variolink II, Ivoclar-Vivadent). The specimens were stored for 24h in distilled water at 37 degrees C prior to microTBS testing. One-way analysis of variance was used to test the influence of surface treatment and Scheffe multiple comparisons test determined pair-wise statistical differences (p<0.05) in microTBS between the experimental groups. The mean microTBSs (standard deviation) are: group 1: 12.8 (+/-4.6)MPa; group 2: 19.1 (+/-5.0)MPa; group 3: 27.4 (+/-11.1)MPa; group 4: 34.0 (+/-8.9)MPa; group 5: 37.6 (+/-8.4) MPa; group 6: 34.6 (+/-12.8)MPa; group 7: 34.5 (+/-5.1)MPa. Statistical significant differences were found between group 1 and groups 3-7, and between group 2 and groups 4-7. All specimens of groups 1-4 exhibited adhesive failures, while a combination of adhesive and mixed (adhesive and cohesive) failures was observed in the specimens of groups 5-7. The results show that surface treatment is important to bond to ceramic and suggests that etching is needed preferably with hydrofluoric acid than with phosphoric acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.