Abstract

AbstractDetermination of shallow earthquake source mechanisms by inversion of long-period (150 to 300 sec) Rayleigh waves requires epicentral locations with greater accuracy than that provided by routine source locations of the National Earthquake Information Center (NEIC) and International Seismological Centre (ISC). The effects of epicentral mislocation on such inversions are examined using synthetic calculations as well as actual data for three large Mexican earthquakes. For Rayleigh waves of 150-sec period, an epicentral mislocation of 30 km introduces observed source spectra phase errors of 0.6 radian for stations at opposing azimuths along the source mislocation vector. This is larger than the 0.5-radian azimuthal variation of the phase spectra at the same period for a thrust fault with 15° dip and 24-km depth. The typical landward mislocation of routinely determined epicenters of shallow subduction zone earthquakes causes source moment tensor inversions of long-period Rayleigh waves to predict larger fault dip than indicated by teleseismic P-wave first-motion data. For dip-slip earthquakes, inversions of long-period Rayleigh waves that use an erroneous source location in the down-dip or along-strike directions of a nodal plane, overestimate the strike, dip, and slip of that nodal plane. Inversions of strike-slip earthquakes that utilize an erroneous location along the strike of a nodal plane overestimate the slip of that nodal plane, causing the second nodal plane to dip incorrectly in the direction opposite to the mislocation vector. The effects of epicentral mislocation for earthquakes with 45° dip-slip fault mechanisms are more severe than for events with other fault mechanisms. Existing earth model propagation corrections do not appear to be sufficiently accurate to routinely determine the optimal surface-wave source location without constraints from body-wave information, unless extensive direct path (R1) data are available or empirical path calibrations are performed. However, independent surface-wave and body-wave solutions can be remarkably consistent when the effects of epicentral mislocation are accounted for. This will allow simultaneous unconstrained body-wave and surface-wave inversions to be performed despite the well known difficulties of extracting the complete moment tensor of shallow sources from fundamental modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call