Abstract

We have previously shown that central administration of beta-endorphin results in a reduction of ornithine decarboxylase activity. Ornithine decarboxylase catalyses the rate-limiting step in the biosynthesis of the polyamines putrescine, spermidine and spermine, thought to modulate nucleic acid synthesis. The present study examines the effects of intracisternal injection of beta-endorphin on brain and liver DNA synthesis in preweanling rats. In six-day-old rats, beta-endorphin (0.75 μg/g brain wt) produced approximately a 70% inhibition in brain and liver DNA synthesis 1h after injection, and values were still subnormal in both tissues 10 h later. Subcutaneous administration of beta-endorphin did not alter liver DNA synthesis. Thus, it is most likely that the suppressed liver DNA synthesis observed in animals given beta-endorphin intracisternally is mediated by central mechanisms. Co-administration of naloxone plus beta-endorphin intracisternally prevented the response, indicating an opioid receptormediated phenomenon. Naloxone alone caused small but significant increases in brain and liver DNA synthesis, suggesting a tonic influence on tissue DNA by endogenous opioids in the CNS. Acute inhibition of ornithine decarboxylase activity by alpha-difluoromethylornithine did not alter DNA synthesis, indicating that the decreases in DNA synthesis induced by beta-endorphin are unrelated to the ornithine decarboxylase/polyamine system. The effect appears to be restricted to early development as no significant changes in DNA synthesis were obtained in 20-day-old animals. The results from these studies indicate that CNS beta-endorphin has the ability to influence DNA synthesis in central as well as in peripheral tissues. Since changes in DNA biosynthetic rates reflect alterations in cell replication, perturbations in CNS beta-endorphin levels during early postnatal life could result in significant deficits in development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.