Abstract

The effects of cement dust on the chemical composition of essential oil, lipid peroxidation and antioxidant enzyme activities of Aleppo pine (P. halepensis) needles were studied. Cement dust resulted in a significant decrease in the yield of essential oil with the effect being more pronounced in the close vicinity of the cement factory. A concomitant decrease in all components of the oil was observed and δ-2-carene, trans-carveol, trans-carvyl acetate, α-terpinyl acetate, β-copaene, (E,E)-α-farnesene, α-calacorene, α-cadinene, spathulenol, humulene oxide II, 8-epi-γ-eudesmol, Ί-muurolol, cubenol and ethyl hexadecanoate have been proposed as biological indicators of cement dust. Moreover, a redirection of the secondary metabolism toward the biosynthesis of monoterpenes has been evidenced. Malondialdehydes (MDA), a decomposition product of polyunsaturated fatty acids, often considered as a suitable biomarker for lipid peroxidation was induced in the needles exposed to cement dust. Similarly, a remarkable induction of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities was noticed. The positive relationships were observed among activities of antioxidant enzymes, and between MDA content and activities of antioxidant enzymes, indicating the cooperative action of these antioxidant enzymes to cope with the oxidative stress induced by cement dust. The results obtained indicate that P. halepensis needles are useful bio-monitors of cement dust pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call