Abstract
Receptor-ligand bonds are often subjected to forces that regulate their detachment via modulating off-rates. Though the dynamics of detachment is primarily controlled by the physical chemistry of adhesion molecules cellular features such as cell deformability and microvillus viscoelasticity have been shown to have an effect on it as well. In this work, Monte Carlo simulation of the rupture of multiple receptor-ligand bonds between substrate and a polymorphonuclear leukocyte (PMN) cell suspended in a Newtonian fluid is performed. It is demonstrated via various micromechanical models of the PMN cell adhered to the substrate by multiple receptor-ligand bonds that viscous drag caused by relative motion of cell suspended in a Newtonian fluid and cellular viscoelasticity modulate transmission of an applied external load to receptor-ligand bonds. It is demonstrated that due to cellular viscoelasticity the instantaneous intermolecular bond force is lower than the instantaneous applied force. It is also demonstrated that due to cellular viscoelasticity, the mean intermolecular bond rupture forces are lowered while the mean bond lifetime increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.