Abstract

In stoloniferous species, the length of petioles is of pivotal importance because it determines the position of leaf blades within the canopy. From a mechanistic perspective, two developmental processes, cell division and cell elongation, are responsible for the length of a given petiole. This study aimed at quantifying the relative contributions of cell division and cell elongation to genotypic and plastic variation in petiole length of the stoloniferous herb Trifolium repens. Thirty-four genotypes of T. repens were grown under high light conditions and simulated canopy shade. Cells were counted and their lengths measured on epidermal prints from fully grown petioles of leaves that had been initiated in the experimental light conditions. Cell number was the main trait explaining petiole length differences among genotypes grown under high light, while both cell number and length changed in response to shading. Our study revealed a strong negative correlation between shade-induced changes in cell number and cell length: genotypes that responded to shading by increasing cell numbers hardly changed in cell length, and vice versa. Our results suggest that genotypic and phenotypic variation in petiole length results from a complex interplay between the developmental processes of cell elongation and cell division.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call