Abstract

The effect of cell fusion and deoxynucleosides (deoxyadenosine, dA; deoxyguanosine, dG; deoxycytidine, dC; thymidine, T) on sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) was studied in two types of BrdU (bromodeoxyuridine)-sensitive and BrdU-resistant B-lymphoblastoid cell lines (LCLs) with respect to cellular proliferation in BrdU-labeled culture conditions. Cell fusion between BrdU-sensitive and BrdU-resistant BS B-LCLs did not exhibit complementation, although when any of the BS B-LCLs (retaining high SCE character) labeled with BrdU were fused with non-labeled normal cells, the hybrid cells had a normal level of SCE at the first mitosis after fusion. Deoxycytidine addition showed no effect on SCEs in normal cells but decreased SCEs in BS cells from the baseline level of 70 SCEs/cell to about 60 SCE/cell. Purine deoxyribonucleosides (dG and dA) caused a significant concentration-dependent increase in SCE frequency both in normal and BS cells. Although T caused a 2-fold increase in normal SCEs, it highly decreased BS SCE from 70 SCEs/cell to 35 SCEs/cell. FrdU did not greatly affect BS SCE in the presence of BrdU and T. These observations indicate strongly that BS cells may have a low thymidine pool compared with normal cells, which could account for a more efficient BrdU substitution in the DNA thus potentiating the template effect on SCE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call