Abstract

In order to fully exploit the potential of Cu-based Fenton systems, Ce was utilized to modify the Cu-based catalysts through one-pot synthesis. A typical antifungal drug, fluconazole (FLC), was selected as the target pollutant to evaluate the reactivity of as-synthetic Cu-Ce bimetallic catalysts. Evaluation test results indicated Ce5%CuOy bimetallic materials exhibit the most excellent catalytic activity. Compared to copper monometallic catalyst, its fluconazole degradation efficiency and TOC removal rate are increased by 20% and 15%, respectively. Ce5%CuOy also possess wide pH applicability (3.0–9.0) and maintain high activity after 4 runs. Radical quenching experiments and fluorescent probes tests showed that hydroxyl radicals (OH) played a dominant role in the degradation of FLC. The various characterization illustrated that Ce doping (2.5–5 at%) significantly improved the properties related to catalytic activity, such as morphology Cu(I) ratio, specific surface area, interface electron transfer rate and unpaired electron content. In particular, the increase in the unpaired electron content and Cu(I) ratio endow more electron-rich centers and active sites on the composite surface, which facilitates the H2O2 to receive electrons and decompose into OH. Finally, the degradation intermediates during fluconazole oxidation were identified by LC/MC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.