Abstract

Cell division cycle 42 (CDC42), which is a member of the Rho GTPase family, has been reported to regulate the metastasis of various human cancer cells; however, the role of CDC42 in gastric cancer (GC) remains unclear. The present study aimed to investigate the effects of CDC42 on the proliferation, migration and invasion of GC. Furthermore, the molecular mechanisms underlying the effects of CDC42 on GC were explored. The expression levels of CDC42 in the AGS and SGC7901 human GC cell lines were reduced by RNA interference. Knockdown of CDC42 significantly inhibited the proliferation of AGS and SGC7901 cells, and it was suggested that this inhibitory process may be due to cell cycle arrest at G1/S phase and downregulation of cyclin A, cyclin D1, cyclin E and proliferating cell nuclear antigen. Furthermore, knockdown of CDC42 markedly inhibited the migration and invasion of GC cells, and suppressed the expression of matrix metalloproteinase 9. These results indicated that CDC42 is a key regulator involved in regulating the proliferation, migration and invasion of GC, and it may be considered a potential therapeutic target in GC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call