Abstract

In this research, the effects of oblique shock on the mixing characteristics in a supersonic combustor equipped with a cavity is numerically investigated. To reveal the flow structure of the supersonic flow field under oblique shock wave interference, three-dimensional steady RANS equations and SST k-ω turbulence model are adopted. The current work focuses on comparing the interaction effects between oblique shock wave and bow shock wave, which are formed by fuel jet on fuel mixing under different conditions. The numerical analysis demonstrates that an optimal angle exists for the mixing efficiency of the ramp. The optimal angle diminishes as the jet-to-crossflow pressure ratio increases. The oblique shock wave in a certain range is conducive to enhance the penetration depth of ethylene. The smaller angle of the ramp does not cause large stagnation pressure losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.