Abstract

The generation of entanglement between distant atoms via single photons is the basis for networked quantum computing, a promising route to large-scale trapped-ion and trapped-atom processors. Locating the emitter within an optical cavity provides an efficient matter-light interface, but mirror-induced birefringence within the cavity introduces time-dependence to the polarisation of the photons produced. We show that such ‘polarisation oscillation’ effects can lead to severe loss of fidelity in the context of two-photon, polarisation encoded measurement-based remote entanglement schemes. It is always preferable to suppress these errors at source by minimising mirror ellipticity, but we propose two remedies for systems where this cannot be achieved. We conclude that even modest cavity birefringence can be detrimental to remote entanglement performance, to an extent that may limit the suitability of polarisation-encoded schemes for large-scale quantum networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.