Abstract

Atomistic simulations were used to calculate defect formation and migration energies for oxygen vacancies in the pyrochlore Gd2Ti2O7, with particular attention to the role of cation antisite disorder. Oxygen occupies two crystallographically distinct sites (48f and 8a) in the ordered material, but the 8b sites become partially occupied with disorder. Because cation and anion disorder are coupled, oxygen vacancy formation and migration energetics are sensitive to the configuration of the cation disorder. The VO8a vacancy and VO8a + O8bi Frenkel defects are energetically favored in the ordered material, but VO8a is favored at higher disorder. The VO8a + O8bi Frenkel is favored for some disorder configurations. Eight possible oxygen vacancy migration paths converge toward a unique migration energy as cation disorder increases, reflecting a reversion towards the fluorite structure. Oxygen vacancy migration is determined by O48f → O48f transitions along the shortest edges of the TiO6 octahedra. The transition V48a → V48f is also possible for low disorder, and can activate the V48f → V48f migration network by depositing vacancies there. The reverse transition may occur at very high disorder to retard ionic conduction, and is consistent with Frenkel defect stabilities. Local regions of ordered and disordered material both appear necessary to explain the observed trends in ionic conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call