Abstract

Current density is a key factor in plasma electrolytic oxidation (PEO) process. The aim of this paper is to study the effects of cathode current density on the composition, morphology, and corrosion resistance of ceramic coatings on ZK60 magnesium alloy prepared through bi-polar plasma electrolytic oxidation in Na 3PO 4 solution. The phase composition, morphology, and corrosion resistance were studied by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization in 3.5% NaCl solution. It is found that the as-produced coatings are only composed of MgO. The increase of cathode current density made the coatings less porous and more compact. Analysis of EIS and potentiodynamic polarization technique on the samples shows that the corrosion resistance of the coated samples is better than that of ZK60 magnesium alloy, and that a bigger cathode current density can improve the corrosion resistance of as-prepared coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call