Abstract

The present research work aims at deciphering the involvement of nitric oxide pathway and its modulation by ( ±)catechin hydrate in experimental paradigm of autism spectrum disorders (ASD). An intracerebroventricular infusion of 4μl of 1M propanoic acid was given in the anterior region of the lateral ventricle to induce autism-like phenotype in male rats. Oral administration of ( ±)catechin hydrate (25, 50, and 100mg/kg) was initiated from the 3rd day lasting till the 28th day. L-NAME (50mg/kg) and L-arginine (800mg/kg) were also given individually as well as in combination to explore the ability of ( ±)catechin hydrate to act via nitric oxide pathway. Behavior test for sociability, stereotypy, anxiety, depression, and novelty, repetitive, and perseverative behavior was carried out between the 14th and 28th day. On the 29th day, animals were sacrificed, and levels of mitochondrial complexes and oxidative stress parameters were evaluated. We also estimated the levels of neuroinflammatory and apoptotic markers such as TNF-α, IL-6, NF-κB, IFN-γ, HSP-70, and caspase-3. To evaluate the involvement of nitric oxide pathway, the levels of iNOS and homocysteine were estimated. Treatment with ( ±)catechin hydrate significantly ameliorated behavioral, biochemical, neurological, and molecular deficits. Hence, ( ±)catechin hydrate has potential to be used as neurotherapeutic agent in ASD targeting nitric oxide pathway-mediated oxidative and nitrosative stress responsible for behavioral, biochemical, and molecular alterations via modulating nitric oxide pathway. The evaluation of the levels of iNOS and homocysteine conclusively establishes the role of nitric oxide pathway in causing behavioral, biochemical, and molecular deficits and the beneficial effect of ( ±)catechin hydrate in restoring these alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.