Abstract

The comparative catalytic activities of iron phosphides, FexP (x = 1–3), have been established with phase-pure material grown by chemical vapor deposition (CVD) from single-source organometallic precursors. This is the first report of the preparation of phase-pure thin films of FeP and Fe2P, and their identity was established with scanning-electron microscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction. All materials were deposited on fluorine-doped tin oxide (FTO) for evaluation of their activities toward the hydrogen evolution reaction (HER) of water splitting in 0.5 M H2SO4. HER activity follows the trend Fe3P > Fe2P > FeP, with Fe3P having the lowest overpotential of 49 mV at a current density of 10 mA cm–2. Density functional theory (DFT) calculations are congruent with the observed activity trend with hydrogen binding favoring the iron-rich terminating surfaces of Fe3P and Fe2P over the iron-poor terminating surfaces of FeP. The results present a clear trend of activity with iron...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.