Abstract

Results of a study focusing on the flexural response of precast prestressed concrete hollow-core slabs with cast-in-place concrete topping are presented. The experimental part of the study included load testing of five precast concrete hollow-core units. The numerically determined flexural response of test specimens was later compared with the experimentally obtained behavior. Results demonstrate that a major composite action is valid between the hollow-core unit and the topping slab under load levels corresponding to uncracked state of the cross section. Existence of a topping slab resulted in improvements in the cracking moment and initial stiffness of hollow-core units. The beneficial effect of topping slab on the ultimate moment capacity was observed to be limited, mainly because of the loss of composite action prior to reaching the ultimate moment capacity. Horizontal shear strength at the interface between hollow-core unit and topping slab was determined (1) through limited number of pushoff load tests and (2) through calculations considering the load level corresponding to initiation of significant relative slip using the basic mechanics of materials approach and the simplified code expression. The measured and computed interface shear strength values were observed to be significantly lower than the horizontal shear strength values specified by the ACI and AASHTO Specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.