Abstract

Abstract This article presents the effects of carriage flexibility on the friction force in linear ball guides, which includes hydrodynamic rolling friction, elastic hysteresis friction, slip friction, and drag friction. To this end, we developed a computational model for the friction force in linear ball guides that accounts for the carriage flexibility. The model was validated through experiments, and the results prove that it provides more accurate friction-force estimates than the conventional model under the assumption of a rigid carriage. Subsequently, we examined the effects of external load, preload, and speed on the friction force. Among several friction components, hydrodynamic rolling friction makes a major contribution to the total friction force. Ball contact loads, which significantly vary with carriage flexibility, were found to influence the hydrodynamic rolling, elastic hysteresis, and slip friction forces. The proposed model considering carriage flexibility in linear ball guides is expected to find use in the design and operation of linear-ball-guide systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call