Abstract
ObjectiveThe ability to adapt digit forces to object properties requires both anticipatory and feedback-driven control mechanisms which can be disrupted in individuals with a compromised sensorimotor system. Carpal tunnel syndrome (CTS) is a median nerve compression neuropathy affecting sensory and motor function in a subset of digits in the hand. Our objective was to examine how CTS patients coordinate anticipatory and feedback-driven control for multi-digit grip force adaptation. MethodsWe asked CTS patients and healthy controls to grasp, lift, and hold an object with different textures. ResultsCTS patients effectively adapted their digit forces to changes in object texture, but produced excessive grip forces. CTS patients also produced larger peak force rate profiles with fewer modulations of normal force prior to lift onset than did controls and continued to increase grip force throughout the lift whereas forces were set at lift onset for the controls. ConclusionsThese findings suggest that CTS patients use less online sensory feedback for fine-tuning their grip forces, relying more on anticipatory control than do healthy controls. SignificanceThese characteristics in force adaptation in CTS patients indicate impaired sensorimotor control which leads to excessive grip forces with the potential to further exacerbate their median nerve compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.