Abstract
Trichomonas vaginalis is a protist parasite of the urogenital tract, responsible for human trichomoniasis, an infection sexually transmitted that affects approximately 156 million people worldwide. This pathology is more evident in females and can cause miscarriages, premature births, and infertility. The disease can also lead to a greater predisposition to HIV infection and cervical and prostate cancer. Metronidazole (MTZ) is a drug that treats human trichomoniasis. The data from studies involving human subjects are limited regarding MTZ use during pregnancy. In addition to the toxicity of the treatment, some isolates have become resistant to MTZ. Therefore, searching for new compounds active for treating trichomoniasis becomes necessary. In the present study, we report results obtained using new phospholipid analogs. Two cardanol-based compounds designated LDT117 and LDT134 were active against T. vaginalis with an IC50 of 4.58 and 10.24 μM, respectively. These compounds were not toxic to epithelial cells in culture. Scanning electron microscopy observations revealed a rounding of the cells, a shortening of the flagella, and protrusions on the surface of drug-treated cells. Transmission electron microscopy of treated cells revealed alterations in the plasma membrane with formations of blebs, protrusions, depressions, and vacuoles with myelin figures and vacuolization in the cytoplasm after incubation. Furthermore, after treatments with the compounds LDT117 and LDT134, the parasites presented a positive reaction for TUNEL, indicating death by a mechanism like apoptosis. Given the results obtained, further in vivo studies using animal experimental models are necessary to validate that these compounds are effective for treating human trichomoniasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.