Abstract

Bioenergy crops are an attractive option for use in energy production. A good plant candidate for bioenergy applications should produce a high amount of biomass and resist harsh environmental conditions. Carbon-based nanomaterials (CBNs) have been described as promising seed germination and plant growth regulators. In this paper, we tested the impact of two CBNs: graphene and multi-walled carbon nanotubes (CNTs) on germination and biomass production of two major bioenergy crops (sorghum and switchgrass). The application of graphene and CNTs increased the germination rate of switchgrass seeds and led to an early germination of sorghum seeds. The exposure of switchgrass to graphene (200 mg/l) resulted in a 28% increase of total biomass produced compared to untreated plants. We tested the impact of CBNs on bioenergy crops under salt stress conditions and discovered that CBNs can significantly reduce symptoms of salt stress imposed by the addition of NaCl into the growth medium. Using an ion selective electrode, we demonstrated that the concentration of Na+ ions in NaCl solution can be significantly decreased by the addition of CNTs to the salt solution. Our data confirmed the potential of CBNs as plant growth regulators for non-food crops and demonstrated the role of CBNs in the protection of plants against salt stress by desalination of saline growth medium.

Highlights

  • The use of fossil fuels has accelerated since the dawn of the industrial revolution and demand will increase dramatically in response to an ever-increasing population and by a higher need for energy by mechanization [1]

  • Considering the interactions of Carbon-based nanomaterials (CBNs) with salt [27], we investigated the response of bioenergy crops to salt stress in the presence of CBNs

  • We concluded that the application of graphene and carbon nanotubes (CNTs) to seeds significantly enhanced the seed germination rate of switchgrass and sorghum (Fig 2)

Read more

Summary

Introduction

The use of fossil fuels has accelerated since the dawn of the industrial revolution and demand will increase dramatically in response to an ever-increasing population and by a higher need for energy by mechanization [1]. It is reported that the energy demand will be increased by more than 50% due to rapid progress in all sectors including infrastructure development by the year 2025 [2]. The predominant fossil fuel power source is restricted [3]. Controversy, environmental concerns and frequently increasing prices associated. Effects of carbon-based nanomaterials on productivity of bioenergy crops. The authors have no other competing interests to declare

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.