Abstract

Carbon quantum dots (CQDs) have high hydrophilicity, high cell permeability, and are frequently used in water-based and biorelated applications, yet studies concerning the ecological risks of CQDs in aquatic environments are largely insufficient. In the present study, the toxicity of CQDs to zebrafish ( Danio rerio), zooplankton ( Daphnia magna), and phytoplankton ( Scenedesmus obliquus) were assessed for the first time. The results indicated that CQDs (up to 200 mg/L) could be depurated by D. rerio with negligible toxicity. In comparison, CQDs induced mortality and immobility in D. magna with a 48-h EC50 value and LC50 value of 97.5 and 160.3 mg/L, respectively. In S. obliquus, CQDs inhibited photosynthesis and nutrition absorption in a dose- and time-dependent manner, and the growth of algae was also inhibited with a 96-h EC50 value of 74.8 mg/L, suggesting that S. obliquus, the lowest trophic level in this study, was most sensitive to CQDs exposure. Further investigations revealed that CQDs induced an increase in oxidative stress in algae cells and a decrease in pH value of an algae medium, indicating that oxidative stress and water acidification may be the mechanisms underlying the toxicity of CQDs to S. obliquus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.