Abstract

Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new properties different from the original F-Uracil. The obtained chemical shielding parameters also indicated that the electronic properties of oxygen and fluorine atoms could detect notable changes whereas those of carbon and hydrogen atoms are almost negligible. Moreover, the most changes of properties were observed for nitrogen atom number one, in which make the connection link of the CNT group to the F-Uracil molecule. The changes of properties of other nitrogen atom are almost negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.