Abstract

Size- and aggregation-controlled dispersion of thin multiwalled carbon nanotube (t-MWCNT) in negative dielectric anisotropic liquid crystal (LC) material exhibits remarkable improvement in electro-optic response time in vertically aligned LC cells. The physical properties such as birefringence, dielectric anisotropy and clearing temperature of nanotube dispersed LC material appear to be almost invariant to that of pristine LC. Nevertheless, the response time shows noticeable improvement, especially in decaying time associated with transition from maximum to minimum transmission, hence important for faster switching LC devices. The effect is attributed to that vertically aligned t-MWCNTs along the field direction play role of vertical alignment layer between LCs, consequently resulting in increased bend elastic constant of LCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call