Abstract

Carbon nanotubes (CNTs) combining unique mechanical and physical properties could offer a kind of nanosized reinforcements for composite materials. Incorporating of CNTs to develop advance engineering composites has become an interesting concept, but the cermets based CNTs composites have been less focused. WC-Co-CNTs nanocomposites were consolidated by spark plasma sintering (SPS) to investigate the effects of CNTs incorporation on the grain growth and mechanical properties of WC-Co nanocomposites. Experimental results show that CNTs could preserve their tubular structures in high temperature SPS process, some CNTs are surviving in the WC-Co fracture surfaces featured bridging and pulling out manner. The interaction between the CNTs and the matrix has a retardation effect of grain growth of WC, but CNTs additions could be resulted in an increase of carbon content in the binder phase that causes enhanced tendency of grain growth, either of which plays the dominated role depending on the CNTs content. The WC-10Co-0.5wt%CNTs nanocomposites possess superior hardness to toughness combinations, which hardness is about 15% and fracture toughness is about 40% higher than that of the pure nano-WC-10Co cermets consolidated under the same process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call