Abstract

Soy polyol-based polyurethane (PU) nanocomposites (PUNCs) with 1 wt.% hydroxyl-functionalized multi-wall carbon nanotubes (CNT-OH) were prepared via in situ polymerization. CNT-OH increased the glass transition temperature as well as significantly improved the thermal stability and conductivity of the PUNCs. The PUNC Young’s modulus was much lower than that of neat PU. The tensile strength of the PUNCs with large CNT-OH diameters was slightly higher than that of neat PU. Compared with neat PU, the elongation at break of the PUNCs improved by 30%, 39%, and 45% with increased CNT-OH diameters. Scanning and transmission electron microscopic methods revealed CNT-OH relatively homogeneous dispersion in the PU matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.