Abstract

ABSTRACT The application of nanoparticle coating in a collector could resolve the issues of lesser heat transfer rate and lower thermal efficiency associated with the flat plate collector (FPC). In this study, carbon nanodots (CNDs) synthesized from fish scales wwere coated over the black paint coating to enhance the thermal efficiency of FPC. The effect of various concentrations (0, 0.1, 0.2, and 0.5%w/v) of CND coatings and mass flow rates of air (0.011 kg/s (natural convection) and 0.015, 0.029, and 0.044 kg/s (forced convection)) on the collector outlet air temperature and efficiency of the FPC were evaluated with a control (black paint). Solar radiation ranged from 382 to 913 W/m2 on the experimental days, and the atmospheric temperature and relative humidity values varied from 26.2 to 34.8°C and 50–72%, respectively. Fourier transform infrared spectroscopic studies of absorber plate coating revealed that the CNDs interacted with the black paint surface through phenolic OH, C=O, and NH mainly by hydrogen bonding. It was observed that the exit air temperature of the collector varied from 55 to 65°C. The thermal efficiency of 59.97%, 62.72%, 71.87%, and 67.75% was obtained for control (black-paint), 0.1%, 0.2%, and 0.5% CNDs coating, respectively, at the airflow rate of 0.044 kg/s. The coating of 0.2% CNDs recorded a maximum thermal efficiency of 71.87% at 0.044 kg/s. Overall, the CNDs coating on the absorber surface enhanced the thermal efficiency of the collector by 19.84% over the black paint-coated surface (control). It can be concluded from the study that CNDs coating resulted in enhanced outlet air temperature and improved thermal efficiency, which can be utilized for low-temperature applications like the drying of food materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call