Abstract

ABSTRACT In this study, an attempt is made to check whether a hybrid composite made up of both synthetic and natural fibers (Carbon and Cordia Dichotoma respectively) can be made bio-degradable, at least to some extent, without much compromising on the mechanical properties. Hybrid composites were prepared by reinforcing alkali treated Cordia dichotoma and carbon fibers into epoxy resin using hand lay-up method. By varying the number of layers of fibers in the composite specimen and fixing 20% fiber weight for all composites, nine distinct combinations of specimens were prepared. The maximum tensile strength of 386.68 MPa, flexural strength of 647.08 MPa, and impact energy of 4.82 J were obtained for composites produced with pure carbon fiber, whereas hybrid composite exhibit tensile strength of 367.76 MPa, flexural strength of 646.41MPa and impact energy of 4.74 J. The interfacial bonding between the fibers and matrix of tested specimens was studied using a scanning electron microscope (SEM), as well as the arrangement of fibers within the matrix for the manufactured composite. Thermogravimetric analysis (TGA) was used to investigate thermal stability, and it was found that it was thermally stable up to 415°C. 9. Crystallinity value increases from 20% carbon fiber to 20% alkali fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call