Abstract
Hot cracking is a major bottleneck preventing the additive manufacturing community from adopting precipitation-strengthened nickel-base superalloys, such as the IN738LC. Prior literature demonstrates the beneficial outcome of increasing the carbon content within IN738LC to alleviate its hot cracking problem. However, the effect of carbon content on the gamma prime precipitation and grain recrystallization was not fully addressed. Here, we fabricated five sample sets of IN738LC with different carbon contents and subjected these samples to two separate heat treatment processes. The precipitate and grain evolution were monitored under the backscattered electron imaging and electron backscattered diffraction studies. While the carbon addition could assist in addressing the hot cracking problem, horizontal delamination cracks were detected during the fabrication of large samples when the overall carbon content was above 0.4 wt.%, highlighting the need for care when introducing carbon for the purpose of resolving hot cracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.