Abstract

Hydrogenated nitrile rubber (HNBR) filled with carbon black (CB) and in-situ prepared zinc dimethacrylate (ZDMA) was prepared by mechanical mixing method. The effects of carbon black on the vulcanization characteristics, physical and dynamic mechanical properties, thermal stability and the fracture surface morphologies of HNBR reinforced by in-situ prepared ZDMA (HNBR/ZDMA) were investigated. The results showed that, for given ZDMA loading (50 phr), with the increasing CB content, the scorch time extended, tensile strength, tear strength and elongation at break increased at first and then decreased, while the modulus at 100% and hardness increased. The comprehensive properties of the HNBR/ZDMA/CB was optimal, when the content of CB was 10 phr. DMA analysis showed that the addition of CB could enhance the storage modulus (E’) & loss modulus (E”), and decreased the glass transition temperature (Tg) of HNBR/ZDMA. TGA analysis revealed that the addition of CB could improve the thermal stability of HNBR/ZDMA. SEM analysis showed that the CB dispersed well in the HNBR/ZDMA, and the CB could improve the dispersion of ZDMA effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call