Abstract
Precipitation behavior and tensile properties have been investigated for 15Cr-15Mn-4Ni austenitic steels containing 0.2wt% carbon and/or 0.2wt% nitrogen. During aging at 600–1000°C, precipitates such as σ, M23C6, and Cr2N were formed and time-temperature-precipitation diagrams were constructed. The type, size, and density of precipitates depended on the carbon and nitrogen contents. The nitrogen addition suppressed carbide formation while the effect of carbon addition on nitride precipitation was comparatively small. The evolution of tensile properties after aging is explained by the changes in solid solution strengthening and deformation modes caused by the precipitation. The precipitation of M23C6 slightly decreased yield strength and elongation while it increased ultimate tensile strength. On the other hand, the precipitation of Cr2N hardly affected tensile properties due to its low volume fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.