Abstract

Carbamazepine (CBZ) is a widely used therapeutic agent in seizure, pain, and mood disorders. Although CBZ has been shown to inhibit hypothalamic CRH secretion in vitro, limited data suggest that systemic CBZ induces pituitary-adrenal activation. Few data are available to reconcile these effects or clarify their mechanism(s), particularly in healthy human subjects. We report here a study of basal ACTH and cortisol secretion and their responses to ovine CRH administration in nine healthy volunteers, studied both during repeated (2-3 weeks) administration of CBZ and while medication free. CBZ significantly increased mean 24-h urinary free cortisol (mean +/- SE, 197 +/- 17 vs. 137 +/- 24 nmol/day; P less than 0.02) and evening basal total plasma cortisol (113 +/- 17 vs. 83 +/- 14 nmol/L; P less than 0.05) as well as cortisol-binding globulin-binding capacity (497 +/- 36 vs. 433 +/- 28 nmol/L; P less than 0.01). Despite the CBZ-induced hypercortisolism, plasma ACTH responses to CRH during CBZ treatment remained robust, rather than being suppressed by basal hypercortisolism. In fact, during CBZ treatment, we noted a positive correlation between the increase in basal plasma cortisol and the increase in the plasma ACTH response to CRH (r = 0.65; P less than 0.05). We also observed a reduction in cortisol-binding globulin-binding capacity after CRH administration (315 +/- 25 vs. 433 +/- 28 nmol/L; P less than 0.001), which was accentuated by CBZ treatment (342 +/- 19 vs. 497 +/- 36 nmol/L; P less than 0.001; magnitude of fall, -155 +/- 22 nmol/L on CBZ vs. -118 +/- 11 nmol/L off CBZ; P less than 0.05). We conclude that CBZ increases plasma cortisol secretion in healthy volunteers independent of its effect on plasma cortisol-binding capacity. This pituitary-adrenal activation seems to reflect a pituitary, rather than a hypothalamic, effect of CBZ. Hence, despite CBZ-induced hypercortisolism, the ACTH response to CRH remained robust in direct proportion to the CBZ-induced rise in basal plasma cortisol. Thus, we propose that the increased cortisol secretion observed during CBZ treatment reflects a relative inefficacy of glucocorticoid negative feedback at the pituitary. This pituitary-driven increase in cortisol secretion combined with the expected reduction in centrally directed CRH secretion could contribute to the anticonvulsant properties of CBZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.