Abstract

Dental pulp, a specialized mesenchymal tissue within teeth, is pivotal in dental health and tissue repair. Capsaicin, the primary pungent component of chili peppers, is known for its diverse pharmacological properties. While capsaicin's effects on various cell types have been studied, its impact on dental pulp cells remains relatively unexplored. This study investigated the influence of pure capsaicin extract on dental pulp cell behavior, focusing on cell viability, proliferation, migration, and alkaline phosphatase (ALP) activity. Capsaicin solution was prepared and diluted to various concentrations (1 nM, 0.01 µM, 0.1 µM, 1 µM, 10 µM, and 100 µM), then was tested on rat dental pulp cells (RPC-C2A). Cell viability and proliferation were assessed using the MTT assay. Boyden chamber tests and wound healing were used for evaluating cell migration. The activity of ALP was determined to show cell function during dental pulp repair. The data were analyzed using a one-way analysis of variance or an independent-sample Kruskal-Wallis, followed by multiple comparison tests. Capsaicin of 100 µM exhibited cytotoxicity, whereas those with lower concentrations stimulated cell proliferation. Wound healing assays revealed increased cell migration, particularly when cultured with 1 nM capsaicin (p = 0.002). Boyden chamber assays demonstrated enhanced cell invasion without statistical significance. ALP activity of dental pulp cells increased significantly at 1 nM (p < 0.001) and 1 µM (p = 0.021) capsaicin concentrations, indicating potential dentinogenesis and pulp repair. Capsaicin of lower concentrations, less than 10 µM, is likely to promote proliferation, migration, and ALP activity of dental pulp cells. Our findings offer potential applications for capsaicin as a medication for dental pulp repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.