Abstract

To better understand how to prepare completely water-saturated specimens or centrifuge models from dry sand, the mechanisms of the infiltration and filling of pores in sand are studied. Complete saturation has been shown by others to be especially important in studies involving the triggering of liquefaction. This paper discusses how the degree of saturation obtained during infiltration increases with the “Bond number”, Bo (ratio of body forces and capillary forces), and the “capillary number”, Ca (ratio of viscous forces and capillary forces), as well as the solubility of gas bubbles in the pore fluid. Bo is varied by changing the particle size, fluid density, and centrifugal acceleration. Ca is varied by changing the fluid viscosity and infiltration rate. The dissolution of gas is encouraged by replacing pore air by CO2 (56 times more soluble in water than N2), by de-airing the liquid prior to infiltration or by increasing the pore fluid pressure after infiltration. Infiltration experiments performed at 1g and in a centrifuge are presented. A new technique for measuring the degree of saturation is also presented. Quantitative pressure–saturation relations are presented for different gasses, illustrating the importance of replacement of air by CO2. Spinning a specimen in a centrifuge during infiltration is also useful for speeding up the saturation process and for achieving higher degrees of saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.