Abstract
Five CAPE-like compounds, namely caffeic acid phenethyl ester (CAPE), methyl caffeate (MC), ethyl 3-(3,4-dihydroxyphenyl)acrylate (EC), phenethyl dimethyl caffeate (PEDMC) and phenethyl 3-(4-bromophenyl)acrylic (BrCAPE) were tested for their anti-HIV replication in vitro and immune modulation effects in vivo. Short-term cytotoxicity was assessed by Trypan Blue stain and MTT assay. For antiviral assays, M-tropic (strain JRCSF), T-tropic (strain NL-4-3) and dual tropic (strain 89.6) HIV isolates were used in peripheral blood mononuclear cell (PBMC) culture. None of these CAPE-like compounds showed significant cytotoxicity in the treatment of PBMCs. By P24 EIA tests, CAPE, MC and EC significantly inhibited HIV replication in PBMC cells, but PEDMC and BrCAPE showed only slightly inhibitory effects. The in vivo modulatory effects on six cytokines [interleukin (IL)-2, IL-4, IL-6, interferon (IFN)-gamma, granulocyte-macrophage colony-stimulating factor (GM-CSF) and soluble Fas] were analysed. BALB/c mice treated with different doses or not treated with these CAPE-like chemicals showed that cytokines were increased to different extents by the different treatments. However, the concentrations of IL-6 and GM-CSF were not significantly affected by administration of any of these compounds (P > 0.05). The different effects of treatments on anti-HIV replication and cytokine modulation suggested that these compounds affect virological and immunological response via different mechanisms. The virological and immunological mechanisms and response to these treatments need to be elaborated in further studies in order to derive the structural features of more effective compounds. Since neither death nor pathological change in the mice were observed in this study, these CAPE-like compounds are worth studying further as potential chemotherapy agents for anti-HIV infection and cytokine modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.