Abstract

The control of appetite and satiety is extremely complex and involves a balance between neurotransmitters and neuropeptides to stimulate and/or inhibit feeding behaviour. The effect of cannabinoids on food intake is well established, but little is known about the mechanism of action underlying their activity. In the present report, the effect of pharmacological manipulation of the cannabinoid receptor on the expression of hypothalamic neuropeptides is investigated. We used an immunohistochemical approach to examine the effect of intracerebroventricular administration of the cannabinoid receptor agonist WIN55,212-2 and the inverse agonist AM251 on neuropeptide Y (NPY) and the β-endorphin (β-end) neuronal hypothalamic systems. Double immunohistochemistry (c-fos/β-end) was used to assess the number of β-end neurons activated by the cannabinoid agonist. The present results showed that 1μg WIN 55,212-2 increases β-end immunoreactivity within the arcuate nucleus while no significant changes were noted in the NPY-immunoreactive nerve fibres network in comparison to the control group. Injection of 1μg AM251 decreases both NPY and β-end immunoreactivity within the arcuate nucleus. The number of β-end neurons exhibiting c-fos increased significantly in WIN 55,212-2 compared with the control group. These results suggest that cannabinoids affect the expression of hypothalamic neuropeptides, notably the NPY and β-end systems, which may have implications in the orexigenic action of cannabinoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.