Abstract

Agents increasing intracellular adenosine 3',5'-cyclic monophosphate (cAMP) cause relaxation of airway smooth muscle. However, the mechanisms of their action are not fully understood. We investigated the role of cAMP in the modulation of intracellular Ca2+ concentration ([Ca2+]i) transients evoked by serotonin (5-HT) in cultured rat tracheal smooth muscle (TSM) cells. Forskolin (10(-7) M) caused a significant elevation of intracellular cAMP and a 60% relaxation of tracheal rings contracted with 5-HT but did not affect [Ca2+]i in TSM cells. Forskolin (10(-5) M) completely relaxed tracheal rings and significantly decreased [Ca2+]i during the sustained phase of the 5-HT response. Forskolin-induced relaxation was attenuated by the cAMP-dependent protein kinase A (PKA) inhibitor Rp diastereomer of cAMP (Rp-cAMPS; 10(-4) M) and by the guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) inhibitor [Rp isomer of 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate, 10(-4) M]. The effects of forskolin on [Ca2+]i were not altered by the PKA inhibitor but were abolished by the PKG inhibitor and thapsigargin. These results indicate that, in rat TSM, the relaxant effects of high concentrations of cAMP may be mediated, at least in part, by facilitating the sequestration of Ca2+ into intracellular stores by a mechanism involving PKG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call