Abstract
This study investigates the unsteady aerodynamic characteristics of the cambered wings of a flapping-wing micro air vehicle (FW-MAV) in hover. A three-dimensional fluid–structure interaction solver is developed for a realistic modeling of large-deforming wing structure and geometry. Cross-validation is conducted against the experimental results obtained also in the present study to establish more accurate analyses of cambered wings. An investigation is carried out on the unsteady vortex structures around the wings caused by the passive twisting motion. A parametric study is then conducted to evaluate the aerodynamic performance with respect to the camber angle at three different flapping frequencies including normal operating conditions. The camber angles producing the largest thrust and highest propulsive efficiency are estimated at each flapping frequency, and their effects on aerodynamic performance are analyzed in terms of the stroke phase. The timing and magnitude of the passive twisting motion, which are dependent on the camber angle at the operating frequency, greatly affects the unsteady vortex structure. Consequently, the camber angle designed at the operating frequency plays a key role in enhancing the aerodynamic performance of FW-MAVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.