Abstract

There is a growing interest on the role of autophagy in diabetes pathophysiology, where development of neuropathy is one of the most frequent comorbidities. We have previously demonstrated that neuropathic pain after nerve damage is exacerbated in autophagy-defective heterozygous Ambra1 mice. Here, we show the existence of a prediabetic state in Ambra1 mice, characterized by hyperglycemia, intolerance to glucose and insulin resistance. Thus, we further investigate the hypothesis that prediabetes may account for the exacerbation of allodynia and chronic pain and that counteracting the autophagy deficit may relieve the neuropathic condition. We took advantage from caloric restriction (CR) able to exert a double action: a powerful increase of autophagy and a control on the metabolic status. We found that CR ameliorates neuropathy throughout anti-inflammatory and metabolic mechanisms both in Ambra1 and in WT animals subjected to nerve injury. Moreover, we discovered that nerve lesion represents, per se, a metabolic stressor and CR reinstates glucose homeostasis, insulin resistance, incomplete fatty acid oxidation and energy metabolism. As autophagy inducer, CR promotes and anticipates Schwann cell autophagy via AMP-activated protein kinase (AMPK) that facilitates remyelination in peripheral nerve. In summary, we provide new evidence for the role of autophagy in glucose metabolism and identify in energy depletion by dietary restriction a therapeutic approach in the fight against neuropathic pain.

Highlights

  • Prediabetes reflects a metabolic alteration due to causes not completely known even if family history and genetics appear to play an important role

  • analysis of variance (ANOVA) for repeated measures revealed significant effects for Genotype (p

  • Heat is expressed as Kcal emitted per hour (h)/Kg. (D) Whole blood amino acid (AA) and acylcarnitine (ACC) profiling of wild type (WT BL) and Ambra1 (A+/- BL)

Read more

Summary

Introduction

Prediabetes reflects a metabolic alteration due to causes not completely known even if family history and genetics appear to play an important role. It is defined as a state of abnormal glucose homeostasis in which deficiency or resistance to insulin are distinctive features [1]. Autophagy is involved in the prevention of β cells death via its activity against protein aggregates that accumulates in β cells as consequence of hyperglycemia-induced oxidative stress [6,7,8,9]. Because of its fundamental role in degrading misfolded proteins, autophagy counteracts oxidative and endoplasmic reticulum (ER) stress, which are both key elements in β cells toxicity and diabetes pathogenesis. Hypoglycemic drugs for type 2 diabetes are β cells protective and autophagy inducers [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call